
Graphical Models 63, 387–412 (2001)
doi:10.1006/gmod.2001.0559

Novel Techniques for Robust Voxelization
and Visualization of Implicit Surfaces

Nilo Stolte

School of Computer Engineering, Nanyang Technological University,
Blk N4, Nanyang Avenue, Singapore 639798

and

Arie Kaufman

Center for Visual Computing/Computer Science Department, State University of New York
at Stony Brook, Stony Brook, New York 11794-4400

Received March 22, 2001; revised September 28, 2001; accepted November 14, 2001

Voxelization is the transformation of geometric surfaces into voxels. Up to date
this process has been done essentially using incremental algorithms. Incremental
algorithms have the reputation of being efficient but they lack an important prop-
erty: robustness. The voxelized representation should envelop its continuous model.
However, without robust methods this cannot be guaranteed. This article describes
novel techniques of robust voxelization and visualization of implicit surfaces. First of
all our recursive subdivision voxelization algorithm is reviewed. This algorithm was
initially inspired by Duff’s image space subdivision method. Then, we explain the
algorithm to voxelize implicit surfaces defined in spherical or cylindrical coordinates.
Next, we show a new technique to produce infinite replications of implicit objects
and their voxelization method. Afterward, we comment on the parallelization of our
voxelization procedure. Finally we present our voxel visualization algorithm based
on point display. Our voxelization algorithms can be used with any data structure,
thanks to the fact that a voxel is only stored once the last subdivision level is reached.
We emphasize the use of the octree, though, because it is a convenient way to store
the discrete model hierarchically. In a hierarchy the discrete model refinement is
simple and possible from any previous voxelized scene thanks to the fact that the
voxelization algorithms are robust. c© 2001 Elsevier Science (USA)

Key Words: voxel; voxelization; 3D visualization; interval arithmetic; implicit
surfaces; parallel processing.

387

1524-0703/01 $35.00
c© 2001 Elsevier Science (USA)

All rights reserved.

388 STOLTE AND KAUFMAN

1. INTRODUCTION

In discrete geometry [7, 20, 22] a 3D continuous volume is represented by a 3D grid
of voxels. This representation is convenient for a number of applications such as mixing
synthetic objects into medical imagery (MRI, CT, etc.). Integer arithmetic is often sufficient
to treat most of the problems using this representation. This has several advantages: better
precision, circuit simplicity, and speed. Nevertheless, many apparently simple problems in
this domain can be difficult to solve and have been the subject of many important research
works. One of these problems is the conversion of a synthetic object into the voxel format,
often called voxelization.

Voxelization is widely used in accelerating ray-tracing and radiosity. In this domain,
voxelization algorithms that can guarantee that the voxels completely envelop the surface
i.e., that no part of the surface will ever be missed), such as the methods proposed in this
paper, can be considerably beneficial.

However, voxelization is now often thought of as only a way to convert synthetic objects
to be visualized using volume rendering techniques. The initial goal of volume rendering
was to visualize data originally obtained in the voxel format that is difficult to convert
to surfaces to be visualized by standard methods, such as in medical imagery. Another
obvious application of volume rendering is to simulate and visualize phenomena or objects
that are not solid such as gases, clouds, smoke, fog, etc. Both these applications have
something in common: the absence of normal vectors. In the first case the normal vectors
must be approximated in order to be able to render the objects in a more natural way. In the
second case the normal vectors are not necessary because the phenomena being simulated
are naturally not related to surfaces. Surfaces, except occasionally implicit surfaces and
not considering scan conversion as a voxelization procedure, do not necessarily need to
be voxelized in order to be visualized unless a specific engine that handles only voxels
but no surfaces is used. In general, though, volume rendering systems can easily allow
mixing volumes with surfaces. In the case of ray-casting, voxelization can be used to
accelerate the intersection between rays and surfaces. In this case the original surface is
still useful to calculate the normal vectors at the intersection points as normally done in
ray-tracing. In volume rendering in general, though, the original surfaces are discarded
once they were voxelized. In this particular case, then, lack of realism occurs because
the surface description, the original source of the normal vectors, is missing. Thus, new
methods as in [31], or other more modern related techniques such as filtration or distance
field voxelisation techniques [24], try to compensate for the absence of normal vectors in
order that the object can be properly rendered by certain volume rendering engines. This
compensation technique should not be confused with the voxelization algorithm itself since
it is specific to a particular rendering engine. Indeed, volume rendering does not emphasize
robustness since this rendering technique and its specifically designed voxelization methods
are intrinsically approximate. Also of mention, since in these cases the surface information
is discarded once the voxelized scene is generated, there is no way to refine the voxelization
from a given state. In principle, then, the whole scene must be voxelized again if one wishes
a more refined view of a particular piece of an object because there is no way to identify
to which surface a voxel belongs. Moreover, resolutions in volume rendering are generally
fixed. One solution to this problem is maintaining one individual volume for each object
in the scene. But, again, to refine a piece of an object one must voxelize the whole object
again.

ROBUST VOXELIZATION OF SURFACES 389

On the other hand, polygons are a popular way to approximate objects in current graphics
engines. Although implicit surfaces are not naturally convertible to polygons, nonmanifold
implicit surfaces polygonization methods exist [6]. A recent method proposed in [2] also
allows converting manifold and nonmanifold implicit surfaces to polygons. It is a variation of
the marching cubes algorithm [15] but using an octree to accelerate the conversion. However,
even with this acceleration, the conversion to polygons still remains a time consuming task.
Manifold and nonmanifold implicit surfaces, though, can be easily converted to voxels (i.e.,
using the algorithms presented in this article). However, it is difficult for manifold implicit
surfaces to be consistently voxelized without subdividing the space. We presented three
existing methods that can subdivide manifold implicit surfaces elegantly by recursively
subdividing the space [27]. We used two of these subdivision methods to voxelize manifold
implicit surfaces. We showed that the voxelization method using interval arithmetic is the
most efficient [27].

The algorithms presented in this article are extentions to this interval arithmetic based
voxelization method presented in [27] that was initially inspired of a method proposed
by Duff [8]. Our method tries to emphasize robustness, discrete model refinement, and
rendering algorithm independency, even though the surfaces normal vectors are stored with
the voxelized scene to use our alternative rendering technique (see Section 6). However, the
normal vector is considered part of the voxel content. Thus, it is transparent as far as the
voxelization process is concerned.

A high-resolution voxel space is a promising solution for rendering curved surfaces and
other complex objects [14, 25, 27]. This is particularly true in the case of manifold implicit
surfaces that are not easily approximated by polygons but that can easily be voxelized.
Voxels can be approximated by a point when they are sufficiently small and seen from
a reasonable distance, thus being displayed at most by one pixel. The simplicity and the
quality gained are the main advantages of this concept. Images rendered this way with
standard hardwired Z-buffer, such as those shown in this article, have a ray-casting quality.
This visualization algorithm is described in Section 6.

1.1. Incremental Voxelization Algorithms

Voxelization of lines and planes is relatively simple using scan-line incremental tech-
niques [12]. Bezier splines surfaces’ voxelization have been also accomplished using incre-
mental techniques [13]. Unfortunately, incremental methods do not guarantee correctness.
Since precision is one of the main motivations of discrete geometry, voxelization based
on incremental techniques does not seem to be an adequate solution for the voxelization
problem.

Incremental algorithms have the reputation of being efficient because additions are gen-
erally much faster than the multiplication and division. In addition, it is a general belief that
integer operations are more efficient than floating point operations. In principle this is true
since floating point operations take 4 steps to be executed (alignment, execution, renormal-
ization, and rounding) while integer operations take only one step (execution). However, this
scenario has been significantly changing in modern machines, since computer chip man-
ufacturers have been supplying processors with special hardware acceleration for floating
point arithmetic. Parallel techniques, such as Pipelines and redundant numeration systems
(i.e., “carry-save”), and other hardware improvements are allowing floating-point opera-
tions to be closer to the integer operation performance as never before. This current reality

390 STOLTE AND KAUFMAN

in the industry and its future trends force us to reconsider the axiom which has been the
inspiration of integer based techniques.

Therefore, the only real advantage of using integer based methods would be of circuit
simplicity, which might be important to special-purpose machines, but not for general-
purpose machines. Special-purpose machines are not likely to be as popular as general-
purpose machines. Hence, general-purpose machines are more likely to be supported by
the industry in the near future. Thus, although incremental techniques are appealing for
performance reasons they are not robust. Moreover, integer operations, the main inspiration
for incremental methods and for a long time thought to be much more efficient than floating
point operations, are really almost as efficient as floating point operations in the latest
processors. This tendency has even worsened now with the arrival of graphics processing
units (GPUs for short), new graphics chips embedding floating point processors.

However, the problem of representing continuous models inside the machine still remains.
Discrete representation is still ideal because of its accuracy and simplicity. Consequently,
discrete models seem convenient to describe continuous models in the machine. Neverthe-
less, all the well-founded axioms and theorems valid for real numbers are lost in the discrete
model. Also, as previously stated, discrete models lack an important piece of information
to be properly rendered: the normal vectors. This indicates that the continuous model is still
important and that it should be maintained. Conversely, discrete models can materialize
analytical surfaces elegantly. In fact, discrete models could be thought of as envelopes to
the continuous surfaces, which could be refined at will using the continuous model. In this
way, to refine from a previously voxelized model, the calculation accuracy should have
been preserved; otherwise, the representation cannot be correctly refined. Thus, the need
for robust voxelization methods becomes evident. As we shall see, robust methods also
provide an efficient way to voxelize nonmanifold as well as manifold implicit surfaces.

1.2. Robust Implicit Surfaces Voxelization Using Recursive Subdivision

This article shows novel methods to voxelize surfaces guaranteeing robustness, that is,
that no part of the continuous surface will ever be missed by the discrete model. Interval
arithmetic [16, 17] is the basic tool used here for this purpose. Interval arithmetic was simul-
taneously but independently introduced to computer graphics by Snyder and Duff [8, 23].
Although many powerful properties have been presented, interval arithmetic still has not
been considered in many computer graphics problems. Intervals are particularly useful in
determining discrete models because any three-dimensional box in the space can be formally
represented by 3 intervals, each one corresponding to one of the coordinates of the space. In
addition, if the continuous model is defined by an implicit surface, interval arithmetic can be
used to determine if the three-dimensional box can contain, or not, a part of the continuous
model. This calculation is done much more efficiently than traditionally, where intersection
calculations would be required. In addition, the result is guaranteed to be correct. However,
interval arithmetic is conservative, which means that large three-dimensional boxes also in-
duce large overestimations. Recursive space subdivision is an elegant way to overcome this
problem, since at each step the volumes shrink to one-eighth of the original volume. There-
fore, the voxelization is easily accomplished by applying this recursive subdivision until
the desired grid resolution is reached. Nonetheless, this voxelization procedure does not
require an uniform resolution. In addition, at any level where the subdivision has stopped,
it can be automatically continued from that point at a later time.

ROBUST VOXELIZATION OF SURFACES 391

There are other algorithms for voxelizing implicit functions by subdividing the space
recursively. One example is the methods that use Lipschitz conditions [4, 11]. Taubin [30]
also proposed a similar method, but restricted it to polynomial implicit surfaces.

To avoid the high memory consumption and to make discrete model refinement easier,
we store the voxels into an octree [26, 27]. This allows us to achieve high resolutions with
low memory consumption, since the majority of the scenes are almost empty. Octrees have
also been used for storage purpose in [11], but as an auxiliary data structure for accelerating
ray-tracing. Indeed, Lipschitz conditions were used for generating voxels and compared
with the interval arithmetic approach in [27]. The result of this comparison is in favor of
interval arithmetic as far as performance is concerned. This was the main reason interval
arithmetic was adopted in our method. Interval arithmetic used in this way guarantees that
we always envelop the surface provided that the proper rounding modes are observed [10].
But in practice, since interval arithmetic is conservative, one may relax switching rounding
modes as this is generally a time consuming operation in present processors.

In contrast, a naive approach would simply evaluate the function on eight corners of every
voxel. If there is no sign variation in the eight calculated values, the voxel is considered
empty; otherwise it is considered full. This method can miss voxels having no corner
intersection yet containing the surface or part of it. Also, its running time increases by a factor
of eight, every time three-dimensional resolution is doubled in each axis. Unfortunately these
two features are contradictory: the effect of missing parts of the surfaces is reduced in high
resolution grids, but high resolution voxelizations using this method are computationally
expensive.

The voxelization methods shown in this article display running times and voxel occupancy
showing an increasing factor of 4 every time resolution is doubled in every coordinate axis
(see Section 3.3). This provides a considerable advantage over naive algorithms. Quite high
resolution voxelizations (in our case always including normal calculations in each voxel)
can be obtained in reasonable time.

Thus, in our method, the surfaces are voxelized at a high discrete resolution, where each
voxel has its color and a normal vector calculated through the gradient of the function
in the middle of the voxel. The normal vector is sensitive to singular points but not the
voxelization.

Once the surface is voxelized we need neither the surface equation nor the conversion of
voxels into polygons to visualize it. We have used two different rendering algorithms: an
efficient high resolution discrete ray-tracing [26] and a hardwired Z-buffer. The algorithm
for visualizing the voxelized scene using a hardwired Z-buffer is given in Section 6.

2. OUR PREVIOUS IMPLICIT SURFACES VOXELIZATION METHOD

The voxelization is done by subdividing the space recursively in an octree fashion as
in [11]. Each subdivided octant is represented in our case by three intervals, one for each
variable (x, y, z), where the lower and higher bounds correspond to the octant bounding
coordinates.

Duff and Snyder [8, 23] have simultaneously yet independently introduced interval arith-
metic to solve computer graphics problems. Duff concentrated on ray-tracing algebraic
implicit functions and Snyder on more general problems such as silhouette edge detection,
surface polygonization, minimum distance determination, etc. The algorithm presented in

392 STOLTE AND KAUFMAN

this section was initially inspired by the image space recursive subdivision method used
by Duff [8, 27]. Our basic algorithm, already introduced in [27], uses the same strategy
for subdividing the object space to produce the voxelization. For this reason we sometimes
refer to it as Duff’s subdivision method [27].

Interval arithmetic guarantees that the exact result of any arithmetic operation is between
two values, called interval bounds. Any real number is represented by two interval bounds.
For example, the coordinates, X, Y, and Z are represented in interval arithmetic as

X = [x, X]

Y = [y, Y]

Z = [z, Z].

These interval bounds in our case are the coordinates of the octants’ boundaries. Substi-
tuting in the implicit function equation each regular coordinate by the correspondent interval
and each regular operation by the respective interval operation produces an interval version
of the function, which Snyder [23] calls an inclusion function. We can verify if the surface
does not pass through the octant by simply testing if the resulting interval does not include
zero, that is, when the inclusion function resulting interval does not include a solution for
the regular function F(x, y, z) = 0. Then, if the resulting interval does not include zero,
the function certainly does not have a zero in the octant; therefore, the surface does not pass
through the octant.

The recursive subdivision method, which defines our voxelization, applies the algorithm
in Fig. 1 in a recursive fashion.

Since we subdivide object space and not the viewing volume, the subdivision is indepen-
dent of view point and does not need to be repeated each time the observer changes position
or orientation. The method is also independent of the rendering algorithm.

The interval operators able to implement inclusion functions can be mainly found in
[8, 23, 27]. Implicit surfaces specific operators like blending and others are not issued in
this article but can be found in [4, 5, 9, 11, 19, 27, 32]. The use of most of these operators
with our voxelization methods may be accomplished without any major difficulty.

Although interval arithmetic has a reputation of being too conservative when equations
become more complex, its performance is better compared to alternative robust methods
such as Lipschitz constants [27]. In addition, several known techniques [18] can be used to

If zero is contained into the interval calculated by applying

the inclusion function to the octant

Then subdivide octant

Else reject octant

FIG. 1. Voxelization using the inclusion function.

ROBUST VOXELIZATION OF SURFACES 393

avoid this interval arithmetic drawback. The simplest technique is to subdivide one or two
more levels to see if a particular voxel really contains a piece of the surface. But applying
this method for every voxel increases the voxelization time by 4 and 16 times, respectively.
However, a smarter heuristic can be applied to know if the super sampling technique is
necessary or not. See the discussion about this heuristic in Section 3.3.

Albeit using tighter interval arithmetic operations might increase the performance, our
priority is not to research more performing interval arithmetic operations but to research
ways to optimize the overall algorithm. One might also want to make use of CSG where
simple equations are most likely to be employed since the main CSG goal is to represent
complex shapes using simple primitives. Furthermore this is exactly the reasoning behind
blobby models [4, 5, 11, 19, 27] where generally only spheres and super-ellipsoids are
used. In our experience, interval arithmetic behaves very well with blobby models even if
thousands of primitives and quite complex blending functions with degrees up to 128 have
been used. However, the need for tighter operators in interval arithmetic is eminent and this
has been a research area on its own.

The next sections present some new techniques in voxelizing implicitly defined objects
using slightly modified versions of the same basic algorithm presented above.

3. NOVEL VOXELIZATION METHOD FOR IMPLICIT SURFACES
IN SPHERICAL AND CYLINDRICAL COORDINATES

Because of axial symmetries, surfaces of CAD objects (and others) are sometimes defined
in spherical or cylindrical coordinates. In this section, a method for converting such a
representation to a rectangular-voxel representation of the surface is presented.

Given the spherical coordinates, r, θ, and φ (or the cylindrical coordinates, r and θ), the
focus of attention here is the surfaces defined implicitly in the form F(r, θ, φ) = 0 (see
Figs. 9, 14, and 13) or F(r, θ) = 0 (or similar more complex formulations involving carte-
sian coordinates as well) in the cylindrical case. For simplicity, however, the examples
shown in this text are in the form F(θ, φ) − r = 0 or F(θ) − r = 0, in the cylindrical
case.

One direct application of these techniques involves blending of spherical or cylindrical
surfaces with rectangular implicit surfaces in the same voxel space, thus profiting from easy
blending with other implicit forms and convenient modeling using spherical/cylindrical
coordinates.

The method uses a spatial recursive subdivision and tests the potential spatial occupation
of the surface in each subdivided rectangular region by using interval arithmetic as seen in
Section 2.

This section presents our method for voxelizing spherical/cylindrical implicit surfaces
simultaneously offering robustness and low complexity. Robustness emerges with the use
of interval arithmetic, while the low complexity results from recursive subdivision of the
space associated with interval arithmetic (see Section 2).

The voxelization is done by subdividing the rectangular space in a recursive way in
eight equal-sized cubes at each interaction. Each of these cubes represents three inter-
vals in interval arithmetic (see Section 2), which are converted to spherical intervals (see
Sections 3.1 and 3.2) and then applied to the implicit spherical inclusion function for a
containment test.

394 STOLTE AND KAUFMAN

R

Θ

Φ

Origin

r0

r1

φ1

φ0

θ0

θ1

FIG. 2. Intervals R[r0, r1], Θ[θ0, θ1], and Φ[φ0, φ1].

3.1. Spherical Intervals

In the same way as with rectangular intervals, spherical intervals are interval versions of
spherical coordinates. Thus, three intervals are defined, one for each spherical coordinate:
r , θ , and φ. In spherical coordinates, r is the distance between a certain point and the surface
origin. Also, by definition, θ is the angle between the projection of the radius on the XZ
plane and the X axis, and φ is the angle between the radius and XZ plane.

The three spherical intervals are defined as

R = [r0, r1]

Θ = [θ0, θ1]

Φ = [φ0, φ1].

The region defined by these intervals is not cubic, but has the form shown in Fig. 2. These
spherical intervals can be inserted in the inclusion function of the spherically described
implicit function. If the resulting interval does not include zero, the region defined by the
spherical intervals does not contain any part of the surface.

3.2. Converting Rectangular to Spherical Intervals

The rectangular X, Y, and Z intervals have to be converted to spherical Θ, Φ, and R inter-
vals. Although the conversion of rectangular to spherical coordinates is straightforward, the
conversion of rectangular to spherical intervals is more involved. To guarantee robustness,
the region in the space defined by the resulting spherical intervals (as shown in Fig. 2) must
completely contain the region defined by the rectangular intervals. On the other hand, the
resulting spherical intervals should be as tight as possible. The method presented here takes
these requirements into consideration.

3.2.1. Obtaining Θ Bounds

To find out the Θ bounds we have defined 9 possible cases (see Fig. 3). These cases cover
the whole angular domain ([0, 2π]). In each of these different cases there is a different

ROBUST VOXELIZATION OF SURFACES 395

x

z

2 1 0

5 4 3

8 7 6

FIG. 3. Nine cases for determining Θ bounds.

solution for finding Θ bounds. Each square in Fig. 3 indicates a square defined by the
intervals X and Z, that is, a projection on the XZ plane of the 3D rectangular region defined
by X, Y, and Z. The numbers in the squares identify the different cases.

Due to space limitations, only one case, case 0, will be discussed. Nevertheless, case 4
is an exception and has no solution, since it would result in an [0, 2π] interval, that is, the
whole domain. This problem would not exist if the origin of the surface lies exactly at a
vertex of a voxel. However, the origin of the surface cannot be imposed by the arrangement
of the voxel grid. In this case, if the subdivision is not at the last level (the voxel level),
our choice is to assume that the cube contains part of the surface, even if this is not true.
Cases different than 4 will eventually show up for subdivided cubes inside this cube, so the
calculation would be again possible. At the last level (the voxel level) if this case persists
to show up it is ignored; that is, it is assumed that there is no surface in it. This does not
constitute a problem because the only voxels of the surface that will be missing are those
that intersect the Y axis. Hence, these voxels could then be calculated in another way.

Figure 4 shows how to obtain angles θ0 and θ1 (Θ bounds) in case 0. In this case,

θ0 = atan(z0/x1) (−∞ rounding)†

θ1 = atan(z1/x0) (+∞ rounding)†,

where the † denotes suggested rounding modes to guarantee numerical robustness.

x

z

θ1

θ0

x0 x1

z0

z1

FIG. 4. Determining Θ bounds for case 0.

396 STOLTE AND KAUFMAN

φ0

φ1

r

y

a

b

c

r'0 r'1

y0

y1

FIG. 5. Three cases for determining Φ bounds.

In the other cases, θ0 and θ1 are calculated in a similar fashion. Angles are always defined
in such a way that cubes are totally enclosed by them as indicated in Fig. 4. This is done to
define a spherical interval which contains the cubic one.

3.2.2. Obtaining Φ Bounds

These bounds are only applicable to spherical coordinates not cylindrical coordinates.
To cover the whole spherical space, φ0 and φ1 need to be defined in only half of the angular
domain, that is, [−π

2 , π
2], since θ0 and θ1 are already defined in the [0, 2π] domain. Since

case 4 is eliminated from the analysis, as discussed in the previous section, only three
different cases are necessary to fully define Φ bounds.

The three cases are indicated in Fig. 5. Axis r in Fig. 5 is a rotating axis over XZ plane.
Suppose that the cube being considered is case 0 (Figs. 3 and 4) and case a (Fig. 5), case 0a
for short, φ0 and φ1 are calculated in the following way (r ′

1 and r ′
0 are not bounds for

R),

r ′
0 =

√
x2

0 + z2
0 (−∞ rounding)†

r ′
1 =

√
x2

1 + z2
1 (+∞ rounding)†

φ0 = atan(y0/r ′
1) (−∞ rounding)†

φ1 = atan(y1/r ′
0) (+∞ rounding)†,

where the † denotes suggested rounding modes to guarantee numerical robustness.

3.2.3. Obtaining R Bounds

Interval R lower and upper bounds correspond respectively to the minimal and maximal
radius value in the 3D region defined by the three rectangular intervals. These maximal and
minimal values are the distances between the surface origin and the points of the 3D region
defined by the three rectangular intervals which are respectively the nearest and the farthest
to this origin.

The process of obtaining these points is straightforward and only requires visualizing the
cube in the three-dimensional space with relationship to the origin.

ROBUST VOXELIZATION OF SURFACES 397

The most trivial calculation is obtaining the lower bounds in cases 1b, 3b, 5b, and 7b.
They are respectively |z0|, |x0|, |x1|, and |z1|. The lower bounds for cases 1a, 3a, 5a, and
7a are respectively

√
z2

0 + y2
0 ,

√
x2

0 + y2
0 ,

√
x2

1 + y2
0 , and

√
z2

1 + y2
0 . Similarly, the lower

bounds for cases 1c, 3c, 5c, and 7c are respectively
√

z2
0 + y2

1 ,
√

x2
0 + y2

1 ,
√

x2
1 + y2

1 , and√
z2

1 + y2
1 .

The lower bounds for cases 0b, 2b, 6b, and 8b are equally simple. They are respectively√
x2

0 + z2
0,

√
x2

1 + z2
0,

√
x2

0 + z2
1, and

√
x2

1 + z2
1.

For all the other bounds in these and other cases, the maximal and minimal points are
always vertices of the rectangular region defined by the rectangular intervals. In these cases
the lower bound is the minimal distance between the origin and one of the vertices; the
upper bound is the maximal distance.

The calculation of R bounds generally requires a square root per bound. However, the
signs of the results of the square roots are ambiguous in certain cases. In spherical coordinates
a negative r may have meaning. To simplify the calculation and to save computation time
one can sometimes work with the square of r instead. This solution was adopted here when
spherical coordinates were used. To use r2, the function sin(n · θ) · sin(m · φ) − r = 0, for
example, can then be evaluated as [sin (n · θ) · sin(m · φ)]2 − r2 = 0.

When r2 cannot be used (when only r shows up in the equation and it cannot be isolated)
then −r should also be considered if the sign of the radius is important. In this case, two
equations are considered instead of only one. An interval can be rejected only if it is rejected
in both equations, that is, if the resulting interval of both inclusion functions does not include
zero.

3.3. Results

Table 1 shows some voxelization times (in seconds) and voxel occupancy (in millions of
voxels) for the function sin(n · θ) · sin(m · φ) − r = 0 for different values of n and m and
different 3D resolutions (see Figs. 9 and 14). All voxelizations were generated on a laptop
with a Pentium III 1-GHz processor. Times marked with the letter a indicate that swapping
occurred. Voxel occupation (indicated in Occ. columns) in Table 1 is given in millions of
occupied voxels. After the voxelization, all surfaces were examined in the same laptop
using a GeForce2 GO GPU and our interactive voxel visualization algorithm described in
Section 6. Normal vector calculation and normalization are included in the voxelization
times.

The overall complexity increases as the resolution grows, but running time and number
of occupied voxels approach an increasing factor of 4 every time resolution doubles in every

TABLE 1

Voxelization Times for sin(n · θ) · sin(m · φ) − R = 0

n = 9, m = 18 n = 9, m = 10 n = 5, m = 6 n = 3, m = 4

Res. Time Occ. Time Occ. Time Occ. Time Occ.

10243 171′′a 23.8 123′′a 18. 77′′a 10.9 49′′ 7.4
5123 37′′ 5.87 28′′ 4.45 18′′ 2.72 13′′ 1.85
2563 8′′ 1.42 7′′ 1.08 4′′ 0.67 3′′ 0.46

a Swapping occurred.

398 STOLTE AND KAUFMAN

coordinate axis. For n = 3 and m = 4, this quadratic behavior is even more pronounced:
the number of occupied voxels is exactly 4 times the value of the previous row. The times
also display the same proportion. By contrast, a method that examines all voxels would
have the time increased by a factor of 23. For a 5123 resolution our proposed algorithm can
be roughly evaluated as being 512 times faster.

These results show a clear pattern of behavior. Voxel occupation tends to be multiplied
by 4 each time the resolution is multiplied by 2 in each axis. This tendency is stronger
the smaller the voxel is. This behavior must come from the fact that smooth surfaces have
a tendency to behave as planes when sampled in narrowing volumes, thus occupying at
maximum only half of the voxels in an octant. This explanation is confirmed in theory
since in the limit when the size of the voxel tends to zero, the voxel tends to a point and
the surface tends to the tangent plane at that point. This means that this knowledge can
be used to establish an heuristic to control how well interval arithmetic is performing. If
the last octant contains more than 4 occupied voxels, this must be seen as suspicious and
further subdivision should be accomplished to eliminate the spurious voxels. If the extra
subdivision did not confirm the presence of spurious voxels, then they must be assumed
to be occupied. Another way of testing is to calculate the implicit function value in each
voxel vertex and verify if there is a change in sign. If there is a change the voxel cannot be
considered spurious; however, nothing can be said if there are no sign variations. A single
occupied voxel or less than 4 occupied voxels in an octant are more likely to be correct
but still have a strong possibility to be spurious. Further study with statistical analysis is
desirable to draw further conclusions in these cases.

3.4. Cylindrical Coordinates

The image in Fig. 6 shows a gear generated using cylindrical coordinates. Gear teeth
were generated by the implicit function r − (0.8 + 0.05 · sin(32 · θ)) = 0 and voxelized
by the method described in this article. All other parts were voxelized using constraints
implementing CSG operations of cylinders and planes. The voxelization time for this model
at a 5123 resolution was 4 seconds with a Pentium III 1-GHz processor and the voxelized
scene contained 1, 014, 512 occupied voxels.

FIG. 6. Gear.

ROBUST VOXELIZATION OF SURFACES 399

FIG. 7. Example of a torus replication.

Other examples of implicit surfaces in cylindrical coordinates are the replicated tori and
the mechanical spring from Section 4 (see Figs. 7 and 8). The tori from Fig. 7 are generated
using Eq. (3). They were voxelized using a combination of the technique shown in this
section and that of Section 4. The original torus is the one in the middle of Fig. 7 and it is
given by Eq. (2).

3.5. Limitations

It is commonplace to express, in spherical coordinates, surfaces on which points with
r < 0 are actually significant. To be more precise, one has a mapping from R3 → R3 given
by (r, θ, φ) → (r · cos θ · cos φ, r · sin φ, r · sin θ · cos φ); this mapping can be applied to
an arbitrary subset of the domain R3 to define a subset of the codomain R3. Unfortunately,
the mapping is not invertible, so we cannot simply map points in the codomain R3 to
the corresponding points in the domain R3. Thus without ad hoc methods, our algorithm is
limited to computing isosurfaces that lie within the (−∞, ∞) × [0, 2π] × [−π

2 , π
2] interval

in the domain space. In certain cases, it is possible to express r in terms of θ and φ, and hence
get an expression for r2; in these cases, besides the considerable economy in calculation
times, only one version of the equation can be used instead of the two suggested above.

4. NEW TECHNIQUE: INFINITE IMPLICIT REPLICATION

Defining complex scenes with simple expressions is an ultimate goal in modeling and
computer graphics. Fractals have fascinated everyone by their beauty and simplicity. Un-
fortunately, they are normally inefficient to be generated, since they require a large number
of recursive iterations to be evaluated. Efficient evaluation is also a high priority in mod-
eling and computer graphics, since the model rendering times are almost always directly
connected with the evaluation efficiency.

Defining surfaces procedurally or with functions allows compact representation of the
model while giving a precise definition of the continuous surface of the modeled objects.
On the other hand, these abstract objects are difficult to be materialized and visualized.

400 STOLTE AND KAUFMAN

FIG. 8. Replication of two subsets of pieces of a mechanical spring.

FIG. 9. sin(9θ) · sin(18φ) − R = 0. FIG. 12. Ten spheres blended.

FIG. 14. sin(3θ) · sin(4φ) − R = 0.

ROBUST VOXELIZATION OF SURFACES 401

Most of the time approximations of these surfaces are used for visualization purposes
only. Parametric surfaces are popular in this sense since they can be easily approximated
by polygons, and polygons are a popular way to approximate objects in current graphics
engines. However, parametric surfaces lack many interesting properties normally found only
in implicit surfaces, namely: the capability to know if a point in the space is in, out, or on the
surface; the notion of distance between a point and a surface by only evaluating the implicit
function at the point; and the blending of different surfaces for easy connectivity. Although
implicit surfaces are not naturally convertible to polygons, they can be easily converted to
voxels using the algorithm presented in Section 2. Thus, implicit surfaces are an attractive
way to model objects and voxels are appealing to materialize these models as well as to
visualize them. During their conversion to voxels a serious concern is the evaluation time for
the surface equation. This function is evaluated for every voxel containing the surface, and
for all parent cubes in the recursive subdivision of the space. Particularly when several copies
of the same object, or slightly modified versions of the same object, are desired, all their
equations are normally evaluated at every voxel or parent cube. A classic way to proceed is
to multiply all the surfaces equations among them [29]; thus if any one of these expressions
is zero the whole function is also zero. A major problem in this approach is that the exact
expressions which are zero in a certain region are unknown, which potentially forces the
evaluation of each expression. Moreover infinite replications become impractical. Thus, an
automatic way to detect which surface corresponds to each region is highly desirable.

We propose in this section a new high level tool to solve this problem, called infinite
implicit replication. The technique is based on a function mapping real values to integers,
which are considered as a replication factor. This method is unique since, to our knowledge,
it has not been shown in any known theorem, axiom, or publication. The simplest form of
replication is attaching the replication factor to translations. In this way the same surface
can be infinitely repeated. Even in this simplest form the technique already has a number
of applications. One of these applications is representing some surfaces implicitly where
previously they could only be defined parametrically.

4.1. Constructing and Applying the Replication Factor

The replication factor is an integer which is a function of one or more real coordinates,
that is, it is a function

f (x1, x2, . . . , xn) : Rn → N .

For simplicity, let the replication factor i be a function of the z coordinate, f (z) : R → N ,
that is,

i = f (z).

Now, let S be a surface to be replicated infinitely along the Z axis separated by a distance
b ∈R. Then a replication factor can be given by

i = (int)

(
z ± b

2

)
b

. (1)

402 STOLTE AND KAUFMAN

When z is positive b
2 is added to z to shift the whole surface to the integer boundary;

otherwise only half of S is replicated. When z is negative b
2 must be subtracted to obtain

the same effect.
Let S be a torus defined implicitly in cylindrical coordinates by the equation

(r − R)2 + z2 − a2 = 0, (2)

where a is the small radius and R is the large radius. Applying the replication factor to S
would give

(r − R)2 + (z − (i · b))2 − a2 = 0. (3)

In this example we demonstrate the simplicity and the power of implicit replication.
The torus is automatically replicated (translated) by steps given by b up to the infinity,
without any extra cost but the computation of i and z − (i · b). These computations are
quite negligible in comparison with the obtained effect. Much more complex scenes can be
derived by applying i in more involved replication functions. This can be seen as a kind of
fractal without the normal intrinsic cost in fractal generation.

4.2. Calculating the Replication Factor in Interval Arithmetic

Interval arithmetic is a key tool for converting implicit surfaces into voxels as seen in
Section 2 and in [25, 27]. However, even the simple replication function shown in Eq. (1) has
a condition (expressed by ±) which is difficult to control in interval arithmetic. Potentially,
the interval can include more than one instance of the object. The simplest way to solve
this problem is evaluating all the instances in each interval I . If one of these evaluations
produces an interval with different signs in its bounds, I is accepted for further subdivision.
Otherwise, I is rejected, since no part of any surface passes through the region delimited
by I . Notice that further the subdivision advances less surfaces are potentially evaluated.
Most of the evaluations will include only one surface, thus saving an important amount of
computing time.

Given an interval [z0, z1] to be evaluated in the inclusion function (the function in interval
arithmetic [23]) of the torus given in Eq. (3), we first calculate two replication factors, one
for each interval bound:

i0 = (int)

(
z0 ± b

2

)
b

i1 = (int)

(
z1 ± b

2

)
b

.

The number of surfaces to be potentially evaluated in this interval is i1 − i0 + 1. There-
fore, a simple loop starting in i0, ending in i1 with a unit increment and containing the
evaluation of the inclusion function of Eq. (3), will be enough to handle all the surface
replications inside an interval [z0, z1]. Notice that the first part of Eq. (3) can be calculated
outside the loop, since it does not depend on z coordinates.

Figure 7 shows a voxelized model containing the replicated torus given by Eq. (3) with
a = 0.1, b = 0.3, and R = 0.7. The voxelization with a Pentium III 1-GHz processor at
a resolution of 5123 was accomplished in 4 seconds and the object occupied 1,875,731
voxels.

ROBUST VOXELIZATION OF SURFACES 403

4.3. Parametrical to Implicit Using Replication

The simple technique presented above can be further developed to be an alternative to
represent some parametrical surfaces in the implicit form. Recent work [1] has focussed
on how to model a solid object usually represented by parametric methods, i.e., through
a B-rep approach. Since parametrically defined objects cannot adequately represent the
solid properties associated with them, authors suggest using implicit sweeps to replace the
parametric representation by an implicit one. The method given in [1] uses Jacobian rank
deficiency conditions to accomplish the sweep of an implicit surface along a curve defined
parametrically. This method has a dual advantage of being very elegant and general. Any
implicit objects can then be swept through any parametric curve which is a very powerful
tool in modelling.

Infinite implicit replication can help to represent certain parametrically defined objects
into implicit form at a very low cost. For example, an infinite helicoidal torus (a mechanical
spring) can be obtained by expressing one cycle of such an object implicitly and infinitely
replicating this cycle. However, joining the different replications of this object implies
interpenetration of the cyclical regions which is not previewed in our infinite replication
technique (it assumes that the replication region is unique, not shared with any other region).
The solution is to divide the object into two subsets and replicate each subset independently.
The two implicit functions, one for each subset, in cylindrical coordinates can be combined
using Ricci’s union operator [21] as shown in Eq. (4). The voxelized object with a = 0.1,
b = 0.7, and R = 0.7, is shown in Fig 8. The voxelization at a resolution of 5123 was
accomplished in less than 6 seconds on a Pentium III 1-GHz processor and the object
occupied 1,564,250 voxels,

A(r, θ, z) = (r − R)2 +
[

z − b ·
(

i + θ

4π

)]2

− a2

B(r, θ, z) = (r − R)2 +
[

z − b ·
(

i + θ

4π
− 1

2

)]2

− a2

F(r, θ, z) = min(A(r, θ, z),B(r, θ, z)) = 0 (4)

θ ∈ [−π, π].

In order to obtain an implicit surface using Cartesian coordinates (x, y, z) we are obliged
to have a mapping M(x, y, z) :R3 → (r, θ, z) ∈ R3, such that the surface is defined by the
points satisfying F(r, θ, z) = 0. Therefore, the domain of the angle θ in Eq. (4) is restricted
to [−π, π] since θ must be calculated from the Cartesian coordinates (x, y, z) using, for
example, the function atan2 (see Section 3.5). Here this limitation is corrected using the
infinite implicit replication. The result is that the mapping M becomes bijective for all
points of F(r, θ, z) = 0.

Our goal is just to show the power of infinite implicit replication and not to try to demon-
strate its generality to solve other problems of this or any other kind. On the other hand, one
is tempted to think that this technique could be used to generate sweeps along arbitrary paths
as those in [1]. This technique as defined here can only generate discrete instances of objects
as shown in this article, but when the object is very thin and the replication distance very
small it can generate objects resembling continuous sweeps. However, this resemblance is
just in appearance since the object created in this way is not a continuous sweep. Conversely,
some sweeps in [1] are used to represent parametrical surfaces in the implicit form. One

404 STOLTE AND KAUFMAN

example is the mechanical spring reproduced above using infinite implicit replication that
can also be generated using sweeps as seen in [1]. The advantage of using our replication
technique in this realm is clearly the efficiency as well as the simplicity of the approach in
relationship to sweeps.

5. NOVEL PARALLEL VOXELIZATION METHOD
USING RECURSIVE SUBDIVISION

The transformation of geometric surfaces into voxels is an important research topic
for volume visualization. It allows mixing geometric with volumetric data into the same
volume. Implicit surfaces, in particular, are usually transformed into voxels before being
transformed to polygons. Voxels are a natural way to represent implicit surfaces in the same
way polygons are a natural way to represent parametric surfaces. For parametric surfaces
the parametric space can be subdivided recursively to produce polygons, while for implicit
surfaces the three-dimensional space can be subdivided to produce voxels. Space recursive
subdivision is an elegant way to produce efficient and robust voxelization. Other important
advantages we can cite are its simplicity to deal with manifold objects, no need for clipping,
low algorithm complexity, and facility to classify regions inside and outside the surface.
Octrees are natural data structures to store volumes where the interior is homogeneous or
nonexistent, and to avoid representing the voxels outside a surface.

Although octrees are not natural candidates for parallelization, good algorithms exist ad-
dressing this subject. One example that particularly fits our problem of surface voxelization
is [3]. This algorithm exhibits fairly good results with up to 4 processors. For more than 4
processors the results are not as satisfying. As in [3], we use a shared-memory machine and
get approximately the same behavior, but with better results.

Unfortunately, the greatest limitation of the algorithm in [3] is the assumption that the
containment of a surface into an octant can be known at any moment. For certain subdivision
algorithms [8, 11, 27, 30] this assumption is not correct. With these subdivisions we can
determine only if the surface is not contained in an octant. When the subdivision reaches
the leaf level, there is no guarantee that the voxel really contains a part of the surface. Nev-
ertheless, the probability of the voxel belonging to the surface grows quickly at each further
subdivision, and at the last level we assume that this probability is high. The voxelization
obtained is guaranteed to always envelop the surface. No voxels of the surface will ever be
missed.

These subdivision algorithms require a totally different approach for parallelization. First,
the octree must be separated from the subdivision. The subdivision must continue until the
last level, and only then can the voxel be stored in the octree. This implies that the octree
storage must be efficient. Thanks to our octree traversal algorithm presented in Section 5.1,
the time of storing voxels in the octree is negligible in relationship to the rest of the tasks.

The goal of our parallelization is the test determining if the octant does not belong to
the surface. In our case we also include the calculation of the normal vector (only on the
last level) for every voxel for visualization purposes. We assign these tasks to several slave
processes that run in parallel. The master process creates the slave processes when the
voxelization is required, controls the work balance, kills the slave processes when the work
is done, and displays the voxelized scene. This approach has promising results, as shown
in Section 5.3.

ROBUST VOXELIZATION OF SURFACES 405

5.1. Serial Octree Traversal

Our octree is a classical pointer octree, where the root node is defined by a pointer
called “octree,” as shown in Fig. 10. This pointer points to an array of pointers with eight
elements, each one representing one-eighth of the original volume. A null pointer means
that the region is empty, while a nonnull pointer points to another array of eight pointers,
further subdividing the region. This process continues until the leaf node is found, where
each nonnull pointer points to a voxel.

The efficiency of our octree lies in its simplicity. We keep one integer variable mask1
with a set bit exactly at the bit position n, where n is the current octree level, which is the
total number of octree levels in the beginning (see Fig. 10). We use this bit to filter the
coordinate’s bits and to control the algorithm as in the octree ray traversal algorithm in [26].

FIG. 10. Octree traversal algorithm.

406 STOLTE AND KAUFMAN

The algorithm in Fig. 10 is given in a “C-like” pseudo-code. For the sake of clarity the type
castings are omitted; each attribution command is given by a ←; the logical commands are
written with its names (and, or) instead of symbolically, and the recursive stack operations
are denoted by push (to put an element into the stack) and pop (to remove an element from
the stack—a pop without argument only affects the stack pointer).

Once initialized (calling init octree()) the octree is dynamically created by calling
store in octree() for each new produced voxel. This function receives 4 parameters—
the three voxel coordinates (X, Y , and Z) and a pointer to the voxel content (input). In our
case, it is the pointer to the surface normal in the voxel.

A remarkable feature of this algorithm is that it does not require descending all octree
levels from the root. It starts from the cell where the last voxel was stored. In most cases
the current voxel will lie in the same cell or in a nearby relative cell. If it does not lie in
the same cell, the algorithm ascends some levels until the common parent is found. This
happens in the first part of the algorithm. To find the common parent we use the variable
mask2 as shown into the algorithm. This part is extremely efficient because of its simplicity
and since the variables used are always in the cache memory.

The next part of the algorithm descends the octree from the common parent cell, creating
new cells when it does not yet exist (when *pcel = 0). The code is quite straightforward,
thus no further details are given here. See [26] for a deeper view of this part. Also see [28]
which uses similar techniques, but for a proprietary linear octree.

5.2. Parallel Recursive Subdivision

Our parallel implementation is a simple master-slave configuration. This configura-
tion was implemented into a shared memory SGI Challenge multi-processor system. The
master creates the slaves and controls their activities. The master maintains an internal
work stack where all octants that are going to be subdivided are stored. Initially, only
the first eight octants are stored into this stack. The master creates the slaves and enters
into a loop until the work is completed. In this loop, the master scans for all nonidle
slave queues in search of their results to store them in the stack or, at the leaf level,
in the octree. Initially all slaves are idle; thus only the eight original octants remain in
the stack. After that, it distributes the octants from the stack to the idle slaves, if there
are any.

Each slave which receives one octant starts to subdivide it and test if the surface is
contained in each sub-octant. This test is the most time-consuming task, thus the focus of
our parallelization algorithm. If the test is true for a given sub-octant, it is stored in the slave
queue. This queue has only eight positions and can be accessed by two different indices:
one for the master and one for the slave. When the master scans a slave queue it uses its
own index. When this index is smaller than the slave index, it is incremented and the octant
from its correspondent position in the slave queue is transferred to the appropriated data
structure. If the slave working octree level is a leaf level, the octants are voxels and are
not written into the working stack but directly into the octree. In this way the quantity of
information passing through the work stack is reduced, thus slightly contributing to a better
performance. Once the slave is finished and its entire queue has been transferred away, it
becomes idle waiting for a new octant from the master. This process is described by the
pseudo-code in Fig. 11.

ROBUST VOXELIZATION OF SURFACES 407

FIG. 11. Parallel recursive subdivision algorithm.

5.3. Results

Table 2 summarizes our results for a resolution of 5123. Scene 1 is shown in Fig. 12;
Scene 2, in Fig. 13; and Scene 3, in Fig. 14). We show the times as a function of the number
of slaves, and the yield in relationship to the time spent for just one slave. The yield is
calculated by dividing the estimated time (t1/n, where t1 is the time for just one slave and
n is the number of slaves) by the real time (tn), that is,

yield = t1
n · tn

.

The yield calculated this way gives a clear idea of the slaves’ activity. The algorithm
was conceived to have a high parallel performance because the work tends to be evenly
distributed among the slaves. However, the results showed an unexpected outstanding per-
formance in Scene 3 for 2 to 4 slaves and for 7 slaves. This result seems to be linked to

408 STOLTE AND KAUFMAN

TABLE 2

Performance Results for a Voxelization Resolution of 5123

Scene 1 Scene 2 Scene 3

Slaves Time Yield Time Yield Time Yield

1 88 — 111 — 71 —
2 45 97% 58 95% 35 100%
3 34 88% 38 97% 23 100%
4 26 84% 31 89% 17 100%
5 21 83% 28 79% 16 88%
6 20 73% 24 77% 14 83%
7 14 89% 21 75% 11 92%

the exceptional behavior this scene had in Section 3.3. It suggests that the load balance
performance is probably near to optimal. The inferior performance in other scenes and even
in this scene for 5 or 6 slaves might not come from the load balancing scheme.

These results were obtained in a Challenger SGI workstation using multiple 200-MHz
R10000 processors. Scene 3 at a resolution of 5123 using 7 slaves took 11 seconds to be
voxelized. The same scene in a Pentium III 1-GHz laptop was voxelized in 13 seconds as
seen in Section 3.3.

The results in Table 2 are interesting and show that the algorithm deserves further con-
sideration.

6. VISUALIZATION METHOD

The visualization method used to generate images for this article is based on high-
resolution voxel spaces (5123). Voxels are stored in an octree, thus, allowing quite huge
discrete spaces without a high memory consumption. Normal vectors are calculated during
the voxelization (times in Table 1 and Table 2 include this calculation) by evaluating the

FIG. 13. sin(4θ) · sin(8φ) − R = 0.

ROBUST VOXELIZATION OF SURFACES 409

FIG. 15. Visualization algorithm.

gradient in the middle of the voxel and then normalizing it. A voxel, located at the leaf octree
level, is just a pointer to a structure containing the three normal vector components, color,
and other information. Higher octree level nodes contain only octree children pointers, when
they exist, or zero otherwise. All the voxels are considered as points and rendered using
SGI’s GL or OpenGL.

This visualization method can eventually allow close-ups of the surface using levels of de-
tails. Levels of details are quite natural to hierarchical voxel models, the models used in this
article, because the transition between the original and refined model is indistinguishable.

The algorithm describing the visualization technique is given in Fig. 15. This algorithm
was first presented in [25]. Point display techniques have become quite popular in the later
years, but none of them was used to render implicit surfaces or other voxelized scenes as
in our case.

The variables cell and root in the algorithm have initially the address of the root of the
octree. Variable i is an index varying from 0 to 7 used to access the current octree element
into an eight-elements cell. These eight elements identify eight equal-sided neighbor cubes,
defining a recursive subdivision of a single cube. Each of these elements contains a pointer
to a new cell, when this cell contains any part of the surface, or a null pointer otherwise. The
recursion is controlled by a stack denoted by the instructions push (to introduce a value in
the stack) and a pop operator (to extract a value from the stack). The variable i is assigned

410 STOLTE AND KAUFMAN

a zero value denoting a left to right tree traversal. Both, cell and i are pushed in the stack to
start the recursive traversal. The recursion is implemented by the do-while loop as shown
in the algorithm. The first part inside the loop ascends the tree if i reaches an index greater
than 7. Since i is zero in the beginning of the algorithm, the control passes immediately to
the second part which descends the tree. This part is a while loop which takes place while
i ≤ 7, indicating that this part also advances to all the elements of the current cell from
left to right. The voxel coordinates X, Y, and Z are built, bit by bit, from the i values.
Notice that the previous coordinate’s bits are saved by shifting them to the left at each new
interaction.

If the current cell is a leaf node, then X , Y , and Z contain the complete coordinates of
the voxel to be displayed and the current element (cell[i]) contains a pointer to the normal
vector of the voxel. These pieces of information are sent to the graphics card using GL
point primitives to display the point with the normal vector. In practice, these pieces of
information are first stored in a list and when the list is full all the points are displayed
at once to increase efficiency. These details are omitted in the algorithm. Notice that after
displaying the voxel, i is incremented to advance to the next element to the right of the
current element. Also notice that the coordinate variables must be shifted one bit to the
right.

If the cell does not correspond to a leaf node, and if the current element (cell[i]) is
zero, the element does not exist; therefore the algorithm advances to the next element (by
incrementing i) and shifts the coordinates one bit to the right. However, if the current
element is not zero, the address of cell and the next element index (i + 1) are saved in the
stack, and the algorithm descends the tree by attributing to cell the address contained in the
current element (cell[i]) and making i equal to zero (to restart from the extreme left side
again in the new cell).

Once i reaches the value 8, which happens when all the elements of a cell are visited, the
control is passed again to the main loop that continues if cell �= root. This time i > 7, and
the first while loop takes the control. This loop extracts from the stack: (1) the indexes i
of the current elements and (2) the cell addresses corresponding to all those cells that were
already completely visited. At each interaction this loop also shifts the coordinates one bit
to the right. Notice that the loop either stops when a cell not yet completely visited is found
(denoted by i values less than or equal to 7) or when the root cell is found. If the root cell
is found and i is greater than 7, all cells in the tree have been visited and the algorithm
finishes.

At the current time, this method allows interactive visualization for easy surface in-
spection. The images produced in this article are snapshots from the visualization method
viewing window. Image quality is comparable to that of ray-casting.

7. CONCLUSION

We have shown in this article our techniques for robust voxelization of implicit surfaces.
The use of spatial recursive subdivision and interval arithmetic is the key for most of the
methods presented. The basic voxelization method shown in Section 2 guarantees that no
part of the surface is ever missed, defining a new concept in this domain. This concept
allows us to voxelize an object starting from a previous voxelization of the same object,
instead of revoxelizing the object again. This creates a new paradigm to be possibly used

ROBUST VOXELIZATION OF SURFACES 411

in interactive walk-throughs using voxels, where objects can be voxelized on the fly when
needed. The efficiency of the approach is quite promising as shown in this article.

We have shown original algorithms for parallel implementation of these voxelization al-
gorithms, and robust voxelization of implicit surfaces expressed in spherical and cylindrical
coordinates. In addition we show a new concept called infinite implicit replication, where
an implicit surface can be replicated without extra evaluation cost, also showing how to
voxelize them robustly using interval arithmetic.

Finally, we have also presented an innovative technique for rendering the voxelized scene
using the hardwired Z-buffer by displaying each voxel as a point. The images in this article,
generated using this technique, prove that the method can produce images with quality near
to ray-casting, but at a fraction of ray-casting rendering times.

REFERENCES

1. K. Abdel-Malek, J. Yang, and D. Blackmore, On swept volume formulations: Implicit surfaces, Comput.
Aided Design 33(1), 2001, 113–121.

2. R. J. Balsys and K. G. Suffern, Visualisation of implicit surfaces, Comput. Graphics 25, 2001, 89–107.

3. M. A. Bauer, S. T. Feeney, and I. Gargantini, Parallel 3D filling with octrees, J. Parallel Distrib. Comput. 22,
1994, 121–128.

4. H. B. Bidasaria, Defining and rendering of textured objects through the use of exponential functions, Graphical
Models Image Process. 54(2), 1992, 97–102.

5. J. Blinn, A generalization of algebraic surface drawing, ACM Trans. Graphics 1(3), 1982, 235–256.

6. J. Bloomenthal and K. Ferguson, Polygonization of non-manifold implicit surfaces, Comput. Graphics 29,
1995, 309–316.

7. J. M. Chassery and A. Montanvert, Géométrie Discrète, Editions Hermès, France, 1991.

8. T. Duff, Interval arithmetic and recursive subdivision for implicit functions and constructive solid geometry,
Comput. Graphics 26(2), 1992, 131–138.

9. G. C. Wyvill, B. McPheeters, and B. Wyvill, Data structure for soft objects, Visual Comput. 2, 1986, 227–234.

10. D. Goldberg, What every computer scientist should know about floating-point arithmetic, ACM Comput.
Surveys 23(1), 1991, 5–48.

11. D. Kalra and A. Barr, Guaranteed ray intersections wih implicit surfaces, Comput. Graphics 23(3), 1989,
297–306.

12. A. Kaufman, An algorithm for 3D scan-conversion of polygons, in Eurographics’ 87, August 1987, pp. 197–
208. North-Holland, Amsterdam, 1987.

13. A. Kaufman, Efficient algorithms or 3D scan-conversion of parametric curves, surfaces, and volumes, Comput.
Graphics 21(4), 1987, 171–179.

14. A. Kaufman, D. Cohen, and R. Yagel, Volume graphics, IEEE Comput. 26(7), 1993, 51–64.

15. W. E. Loresen and H. E. Cline, Marching cubes: A high resolution 3D surface construction algorithm, Comput.
Graphics 21(4), 1987, 163–169.

16. R. E. Moore, Interval Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1966.

17. R. E. Moore, Methods and Application of Interval Analysis, Soc. for Industr. & Appl. Math. Philadelphia,
1979.

18. S. P. Mudur and P. A. Koparkar, Interval methods for processing geometric objects, in IEEE-CGA, February
1984, pp. 7–17.

19. S. Muraki, Volumetric shape description of range data using “Blobby Model,” Comput. Graphics 25(4), 1991,
227–235.

20. J. P. Reveillès, Géométrie Discrète, Calcul en nombres entiers et Algorithmique, Ph.D. thesis, Université Louis
Pasteur de Strasbourg. 1991.

21. A. Ricci, A constructive geometry for computer graphics, Comput. J. 16(2), 1973, 157–160.

412 STOLTE AND KAUFMAN

22. A. Rosenfeld and R. A. Melter, “Digital Geometry,” Math. Intelligencer 11(3), 1989, 69–72.

23. J. M. Snyder, Interval analysis for computer graphics, Comput. Graphics 26(2), 1992, 121–130.

24. M. Sramek and A. Kaufman, Alias-free voxelization of geometric objects, Trans. Visualization Comput.
Graphics 3(5), 2000, 236–252.

25. N. Stolte, High Resolution Discrete Spaces: A New Approach for Modeling and Realistic Rendering (Espaces
Discrets de Haute Résolutions: Une Nouvelle Approche pour la Modelisation et le Rendu d’Images Réalistes),
Ph.D. thesis, Université Paul Sabatier, Toulouse, France, April 1996.

26. N. Stolte and R. Caubet, Discrete ray-tracing of huge voxel spaces, Comput. Graphics Forum 14(3), 1995,
383–394.

27. N. Stolte and R. Caubet, Comparison between different rasterization methods for implicit surfaces, in Visu-
alization and Modeling (R. Earnshaw, J. A. Vince, and H. Jones, Eds.), Chap. 10, pp. 191–201, Academic
Press, San Diego, 1997.

28. K. Sung, A DDA traversal algorithm for ray tracing, in Eurographics’91, Amsterdam, June 1991, pp. 73–85,
North-Holland, Amsterdam, 1991.

29. G. Taubin, Distance approximation for rasterizing implicit curves, ACM Trans. Graphics 13(1), 1994, 3–42.

30. G. Taubin, Rasterizing algebraic curves and surfaces, in IEEE-CGA, March 1994, pp. 14–23.

31. W. S. Wang and A. Kaufman, Volume-sampled 3D modeling, in IEEE-CGA, September 1994, pp. 26–32.

32. B. Wyvill, E. Galin, and A. Guy, Extending the CSG tree: Warping, blending and boolean operations in an
implicit surface modeling system, Comput. Graphics Forum 18(2), 1999, 149–158.

	1. INTRODUCTION
	2. OUR PREVIOUS IMPLICIT SURFACES VOXELIZATION METHOD
	FIG. 1.

	3. NOVEL VOXELIZATION METHOD FOR IMPLICIT SURFACES IN SPHERICAL AND CYLINDRICAL COORDINATES
	FIG. 2.
	FIG. 3.
	FIG. 4.
	FIG. 5.
	TABLE 1
	FIG. 6.
	FIG. 7.
	FIG. 8.

	4. NEW TECHNIQUE: INFINITE IMPLICIT REPLICATION
	FIG. 9.

	5. NOVEL PARALLEL VOXELIZATION METHOD USING RECURSIVE SUBDIVISION
	FIG. 10.
	FIG. 11.
	TABLE 2
	FIG. 12.
	FIG. 13.
	FIG. 14.

	6. VISUALIZATION METHOD
	FIG. 15.

	7. CONCLUSION
	REFERENCES

