ROBUST HIERARCHICAL VOXEL MODELS FOR REPRESENTATION AND
INTERACTIVE VISUALIZATION OF IMPLICIT SURFACES IN SPHERICAL
COORDINATES

Nilo Stolte! and Arie Kaufman?
{stolte|ari}@cs.sunysb.edu

tSchool of Computer Science & Eletronic Systems

Kingston University

Penrhyn Road, Kingston upon Thames
Surrey KT1 2EE England

tComputer Science Department

State University of New York at Stony Brook
Stony Brook, NY 11794-4400 U.S.A.

ABSTRACT

In this article we present a new method of vox-
elizing implicit surfaces in spherical coordinates. The
approach has several advantages: (1) The voxeliza-
tion algorithm is robust and has low complexity; (2)
allowing high resolution voxelizations, including nor-
mal calculations, in reasonable time and (3) its vi-
sualization using GL points with normals generates
Ray-Casting quality images at interactive speeds.

The approach is robust because no part of the sur-
face will be missed in the voxel model and because
no floating point errors will occur. The robustness
emerges from the use of interval arithmetic. Voxeliza-
tion is done by subdividing the rectangular space in
a recursive way until the voxel level is reached. The
rectangular intervals are then converted to spherical
intervals and interval arithmetic assists in identify-
ing whether the surface does not cross a subdivided
space at a very early stage. This algorithm has a dual
advantage: voxelization is guaranteed to envelop the
true surface, and its experimental running time in-
creases only by a factor of 4, instead of 8, every time
resolution is doubled for every coordinate axis.

The resulting voxelization is stored in an octree
defining a new concept called here robust hierarchical
vozel model which guarantees that every level of the
tree defines a set of voxels which always envelop the
continuous surface. Each voxel stores the normal vec-
tor, calculated by the gradient of the function during
the voxelization.

The visualization method used to render the hier-
archical voxel model in this article uses GL/OpenGL
point primitives and no special hardware is required

besides the Z-Buffer.

Keywords: Implicit Surfaces, Voxelization, Spheri-
cal Coordinates, Cylindrical Coordinates.

1. INTRODUCTION

Because of axial symmetries, surfaces of CAD ob-
jects (and others) are sometimes defined in spherical
or cylindrical coordinates. In this paper, we present
a method for converting such a representation to a
rectangular-voxel representation of the surface.

Given the spherical coordinates: r, § and ¢ (or
the cylindrical coordinates: r and); the focus of at-
tention in this paper are the surfaces defined implic-
itly in the form F(r,6,¢) = 0 or F(r,0) = 0, in the
cylindrical case. For simplicity, however, the exam-
ples shown in this text are in the form F(0,¢)—r =0
or F(8) —r =0, in the cylindrical case.

One direct application of these techniques involves
blending of spherical or cylindrical surfaces with rect-
angular implicit surfaces in the same voxel space, thus
profiting from easy blending with other implicit forms
and convenient modeling using spherical/cylindrical
coordinates.

Voxels are very widely used in accelerating ray-
tracing and radiosity. In this domain, voxelization
algorithms that can guarantee that the voxels com-
pletely envelop the surface (i.e. that no part of the
surface will ever be missed), such as the method pro-
posed in this paper, can be considerably beneficial.

The method uses a spatial recursive subdivision
and tests the potential spatial occupation of the sur-

face in each subdivided rectangular region by using
interval arithmetic. If a certain region does not con-
tain a part of the surface it is not further subdivided.
Otherwise the subdivision goes on until the desired
resolution is found and the result is stored into an
octree. A similar effect can be obtained using Lips-
chitz conditions instead of interval arithmetic [5, 1].
Taubin [10] also proposed a method with a compara-
ble effect, but restricted to polynomial implicit sur-
faces. Octrees have also been used for storage purpose
in [5], but as an auxiliary data structure for accel-
erating ray-tracing. Effectively, Lipschitz conditions
were used for generating voxels and compared with
the interval arithmetic approach in [9]. The result
of this comparison was in favor of interval arithmetic
as far as performance was concerned. This was the
main reason interval arithmetic was adopted in our
method. Besides always guaranteeing to envelop the
surface (also true when using Lipschitz constants or
Taubin’s method), the use of interval arithmetic has
the additional advantage of avoiding the rounding er-
rors, provided that the proper rounding modes are
used [4].

In contrast, some voxelization methods [3] simply
evaluate the function on eight corners of every voxel.
If there is no sign variation in the eight calculated
values, the voxel is considered empty; otherwise it is
considered full. This method can miss voxels having
no corner intersection yet containing the surface or
part of it. Also, its running time increases by a fac-
tor of 8, every time three-dimensional resolution is
doubled in each axis. Unfortunately these two fea-
tures are contradictory: the effect of missing parts of
the surfaces is reduced in high resolution grids, but
high resolution voxelizations using this method are
very computationally expensive.

This article presents a novel method for voxelizing
spherical/cylindrical implicit surfaces simultaneously
offering robustness and low complexity. Robustness
emerges with the use of interval arithmetic, while the
low complexity results from recursive subdivision of
the space associated with interval arithmetic (see Sec-
tion 2).

The voxelization is done, as pointed out before, by
subdividing the rectangular space in a recursive way,
producing eight equal sized cubes at each interaction.
Each of these cubes represents three intervals in in-
terval arithmetic (see section 2), which are converted
to spherical intervals (see sections 2.1 and 3) and then
applied to the implicit spherical inclusion function for
a containment test. This algorithm is shown to dis-
play running times asymptotically approaching an in-
creasing factor of 4 every time resolution is doubled in
every coordinate axis (see section 4). This provides a
considerable advantage over algorithms which exhibit
running times increasing by a factor of 8, every time
resolution is doubled in every coordinate axis. Quite
high resolutions voxelizations (including normal cal-

culations in each voxel) can be obtained in reasonable
time.

Hierarchical voxel models allow the definition and
the storage of high-resolution voxel spaces, that is an
alternative solution for displaying curved surfaces and
other complex objects [8, 9, 6]. In this article, voxels
are approximated by a point because they are suf-
ficiently small and seen from a reasonable distance,
thus being displayed at most by one pixel. The sim-
plicity and the quality gained are the main advan-
tages of this concept. Images rendered this way with
standard hardwired Z-buffer, such as those shown in
this article, exhibit ray-casting quality at interactive
speeds. This shows that hierarchical voxel models are
also appropriate for direct visualization.

2. INTERVAL ARITHMETIC

Snyder [7] and Duff [2] have simultaneously intro-
duced Interval Arithmetic to solve problems in Com-
puter Graphics.

Duff [2] has proposed using interval arithmetic to
subdivide implicit functions in screen space, in order
to ray-cast this kind of surface. The main drawback
of this technique is its point of view dependence, since
the subdivision is part of the visualization process.

In [9], Duff’s method has been generalized to sub-
divide implicit functions in object space for voxeliza-
tion purposes. This voxelization method is the basis
for the voxelization method described in this article.
This new approach isolates the subdivision in a pre-
processing stage, storing the resulting voxels into a
model, namely the robust hierarchical vozel model.
This model can then be displayed using GL points
with normals. This method allows interactive visu-
alization with image quality similar to Ray-Casting
(see Fig. 7 and Fig. 6).

Interval arithmetic guarantees that the exact re-
sult of any arithmetic operation is between two val-
ues, called interval bounds. Any real interval is rep-
resented by two interval bounds. For example, the
coordinates z, y, and z are represented in interval
arithmetic by, respectively:

X = [1’0,1’1]
Y = [yo,]
Z

= [20,21]

The interval bounds in our case are the coordi-
nates of the boundaries of an arbitrary cubic region
in space. Substituting in the implicit function equa-
tion each regular variable by the corresponding inter-
val and each regular operation by the respective in-
terval operation, produces an interval version of the
function, which Snyder [7] calls an inclusion function.
We can verify if the surface does not pass through the
cubic region by simply testing whether the resulting

interval does not include zero, that is, when the inclu-
sion function resulting interval does not include a so-
lution for the regular function F'(z,y,z) = 0. Then, if
the resulting interval does not include zero, the func-
tion certainly does not have a zero in the cubic region,
and hence the surface does not pass through the cubic
region.
The interval arithmetic operators are:

X+Y = [zo+Yo, 21 + Yo

X-Y = [20—Y0,71 — Yo]

X - Y = [min(zoyo, Zoy1,T1Y0, T1Y1),
max(ToYo, ToY1, 1Yo, T1Y1)]

X /Y = [vo/y1,71/y0] if yo >0

These operators are not enough for the functions
used in practice. To include any algebraic expression
we need also:

[zB,27] n odd or g >=0
[z], 2] n even and 21 <=0
[0, max(—zp,21)"] n even and 0 € [z, 21]

X" =

Any other function can be similarly converted to
interval arithmetic by breaking the domain of the
function to its monotonic intervals [2]. The sine func-
tion, for example, can be defined this way [7].

To implement intervals with floating point arith-
metic in a computer we should modify the interval
in such a way that the real value we want to rep-
resent is in a computer-representable floating point
interval. To guarantee result exactness we must be
sure to round to —oo in lower bound calculation, and
to +o00 in upper bound calculation [4].

2.1. Spherical Intervals

The same way as with rectangular intervals, spherical
intervals are interval versions of spherical coordinates.
Thus, three intervals are defined, one for each spheri-
cal coordinate: r, #, and ¢. In spherical coordinates,
r is the distance between a certain point and the sur-
face origin. Also, by definition, 6 is the angle between
the projection of the radius on the XZ plane and the
X axis, and ¢ is the angle between the radius and XZ
plane.

The three spherical intervals are defined as fol-
lows:

R = [7"0,7"1]
© = [0,01]
® = [¢o, 1]

The region defined by these intervals is not cubic,
but has the form shown in Fig. 1. These spherical in-
tervals can be inserted in the inclusion function of the

spherically-described implicit function. If the result-
ing interval does not include zero, the region defined
by the spherical intervals does not contain any part
of the surface.

Origin

Sz T A

Figure 1: Intervals Rlrg,r1], ©[fo,01] and ®[pg, d1]

3. THE VOXELIZATION METHOD

The voxelization is accomplished by a recursive three-
dimensional spatial subdivision process similar to an
octree generation. This process recursively subdi-
vides a given 3D rectangular region into eight equally
sized 3D rectangular regions. Each of the eight sub-
divided rectangular regions is represented by three
intervals, one for each variable respectively (X,Y,Z),
where the lower and upper bounds correspond to the
rectangular region bounding coordinates.

These rectangular intervals are then converted to
spherical intervals. After, the spherical intervals are
applied to the inclusion function of the spherically-
described implicit function, giving, as a result, the
interval I:

I = [io,ii] = F(R,0,9)

If 0 € I, the current rectangular region is empty
(it is not occupied by the surface) and it is ignored.
In this case, the next rectangular region in the list of
eight is examined and the process described above is
repeated.

If 0 € I, the current rectangular region is further
subdivided in eight other rectangular regions and the
same process described above is repeated to these
eight new regions. Eventually the subdivision arrives
to the desired resolution. At this point, the rect-
angular region is a voxel and it is inserted into the
octree. When all eight rectangular regions in a level
were visited the process is repeated for the remaining
rectangular regions in the upper levels.

The voxelization in a given resolution can be seen
as the set of voxels where empty regions could not

be eliminated using interval arithmetic, that is, the
set, of voxels potentially occupied by the surface at a
given resolution.

3.1. Converting Rectangular to Spherical Intervals

As discussed above, rectangular X, Y and Z inter-
vals have to be converted to spherical ®, & and R
intervals. Although the conversion of rectangular to
spherical coordinates is straightforward, the conver-
sion of rectangular to spherical intervals is more in-
volved. To guarantee robustness, the region in the
space defined by the resulting spherical intervals (as
shown in Fig. 1) must completely contain the region
defined by the rectangular intervals. On the other
hand, the resulting spherical intervals should be as
tight as possible. The method presented here take
these requirements in consideration.

3.2. Obtaining © bounds

z
2 1 0
|
-5 H4H 3 =
X
|
8 7 6
|

Figure 2: Nine cases for determining © bounds

To find out the ® bounds we have defined 9 pos-
sible cases (see Fig. 2). These cases cover the whole
angular domain ([0, 27]). In each of these different
cases there is a different solution for finding © bounds.
Each square in Fig. 2 indicates a square defined by
the intervals X and Z, that is, a projection on the
XZ plane of the 3D rectangular region defined by X,
Y and Z. The numbers in the squares identify the
different cases.

Due to space limitations, only one case, case 0,
will be discussed. Nevertheless, case 4 is an exception
and has no solution, since it would result in an [0,
27] interval, that is, the whole domain. This problem
would not exist if the origin of the surface lies exactly
at a vertex of a voxel. However, the origin of the
surface can not be imposed by the arrangement of
the voxel grid. In this case, if the subdivision is not
at the last level (the voxel level), our choice is to
assume that the cube contains part of the surface,
even if this is not true. Cases different than 4 will

eventually show up for subdivided cubes inside this
cube, so the calculation would be again possible. At
the last level (the voxel level) if this case persists to
show up it is ignored, that is, it is assumed that there
is no surface in it. This does not constitute a problem
because the only voxels of the surface that will be
missing are those that intersect the “Y” axis. Hence,
these voxels could then be calculated in another way.

Figure 3 shows how to obtain angles 6y and 6; (©
bounds) in case 0. In this case:

o
0 =

atan(zy/x1)

atan(z1/xo)

Z]_ 77777777 /

Figure 3: Determining © bounds for case 0

In the other cases, 8y and 6, are calculated in a
similar fashion. Angles are always defined in such a
way that cubes are totally enclosed by them as indi-
cated in Fig. 3. This is done to define a spherical
interval which contains the cubic one.

3.8. Obtaining ® bounds

These bounds are only applicable to spherical coordi-
nates not cylindrical coordinates. To cover the whole
spherical space, ¢p and ¢; need to be defined in only
half of the angular domain, that is, [-3,], since 6
and 6; are already defined in [0, 27] domain. Since
case 4 is eliminated from the analysis, as discussed
in the previous section, only three different cases are

necessary to fully define & bounds.

The three cases are indicated in Fig. 4. Axis r
in Fig. 4 is a rotating axis over XZ plane. Suppose
that the cube being considered is case 0 (Fig. 2 and
3) and case a (Fig. 4), case Oa for short, ¢o and ¢
are calculated in the following way (r{ and 7§ are not
bounds for R):

Figure 4: Three cases for determining ® bounds

6 = Vxol+ 202 (—o0 rounding)
rt = Vzi?+ 21?2 (400 rounding)
¢o = atan(yo/ri) (—oo rounding)
¢1 = atan(y1/ry) (+oo rounding)

Notice the suggested rounding modes to guarantee
numerical robustness.

3.4. Obtaining R bounds

Interval R lower and upper bounds correspond re-
spectively to the minimal and maximal radius value
in the 3D region defined by the three rectangular in-
tervals. These maximal and minimal values are the
distances between the surface origin and the points of
the 3D region defined by the three rectangular inter-
vals which are respectively the nearest and the far-
thest to this origin.

The process of obtaining these points is straight-
forward and only requires visualizing the cube in the
three-dimensional space with relationship to the ori-
gin.

The most trivial calculation is obtaining the lower
bounds in cases 1b, 3b, 5b and 7b. They are respec-
tively: |zol|, |Zo|, |z1| and |z1|. The lower bounds for
cases Ia, 3a, 5a and 7a are respectively: /202 + o2,
\/.7:02 + y02, \/%12 + y02, and 4/ 212 + y02. Similarly,
the lower bounds for cases I¢, 3¢, 5c¢ and 7c are
respectively: /202 + 12, /702 + 12, /712 + 12,
and /212 + y12.

The lower bounds for cases 0b, 2b, 6b and 8b are
equally simple. They are respectively: v/zo2 + 22,
Vzi12 + 202, Vzo2 + 212 and Vz12 + 212.

For all the other bounds in these and other cases,
the maximal and minimal points are always vertices
of the rectangular region defined by the rectangular
intervals. In these cases the lower bound is the min-
imal distance between the origin and one of the ver-
tices; the upper bound is the maximal distance.

The calculation of R bounds generally requires a
square root per bound. However, the signs of the
results of the square roots are ambiguous in certain
cases. In spherical coordinates a negative r may have
meaning. To simplify the calculation and to save
computation time one can sometimes work with the
square of r instead. This solution was adopted here
when spherical coordinates were used. To use 72, the
function sin(n-0)-sin(m-¢)—r=0, for example, can
then be evaluated as [sin(n-8)-sin(m-$)]*>—r?=0.

When 72 can not be used (when only r shows up
in the equation and it can not be isolated) then —r
should also be considered if the sign of the radius is
important. In this case, two equations are considered
instead of only one. An interval can be rejected only
if it is rejected in both equations, that is, if the result-
ing interval of both inclusion functions do not include
7Zero.

4. RESULTS

n=9 m=18 n=9, m=10
Res. Time | Mem. Time | Mem.
1024% | 653 s | 149.363 | 258 s | 113.738
5123 | 160s | 39.285 | 120s | 30.777
2563 35s 12.261 28 s 10.308
1283 6 s 5.738 5s 5.324

n=>5, m=6 n=3, m=4
Res. Time | Mem. Time | Mem.
10242 | 307s | 70.472 | 208 s | 48.621
5123 74 s 20.363 50 s 14.980
2563 18 s 7.886 12 s 6.597
1283 3s 4.816 2s 4.511

Figure 5: Times for sin(n-6)-sin(m-¢)—r=0

Fig. 5 shows some voxelization times for the func-
tion sin(n-0)-sin(m-¢)—r=0 for different values of
n and m and different 3D resolutions (see Fig. 6).
Normal vector calculation and normalization are in-
cluded in the voxelization times. The overall com-
plexity increases as the resolution grows, but running
time asymptotically approaches an increasing factor
of 4 every time resolution doubles in every coordinate
axis. At higher resolutions this quadratic behavior is
even more pronounced: for n=3 and m=4, at at 20483
resolution (i.e., double of 1024? in each axis), our es-
timated time is 22x208 s = 832 s; the actual time
was 833 s. By contrast, a method that examines all
voxels [3] would have the time increase by a factor of
23. For a 5122 resolution our proposed algorithm can
be roughly evaluated as being 512 times faster.

The image in Fig. 7-a shows a gear generated
using cylindrical coordinates. Gear teeth were gen-
erated by the implicit function r—(0.84-0.05-sin(32-

(b)

Figure 6: (a) sin(3 6)-sin(4 ¢)—r=0 and (b) sin(9
0)-sin(18 ¢)—r=0

#))=0 and voxelized by the method described in this
article. All other parts were voxelized using con-
straints implementing CSG operations of cylinders
and planes. The voxelization time for this model at
5123 resolution was 12 seconds.

The image in Fig. 7-b illustrates another exam-
ple of practical aplication of our voxelization method
using cylindrical coordinates. The contour of the
non-cylindrical parts is given by the implicit function
r—(1.240.05-sin(3-0)) =0, that is, basically the same
equation used for the gear. The voxelization time for
this model at 5123 resolution was 14 seconds.

All voxelizations were generated on a Challenger
SGI workstation using a single 200MHz R10000 pro-
cessor. Memory occupation in Fig. 5 is given in
MBytes. All images were generated on the same ma-
chine using our interactive voxel visualization soft-

(b)

Figure 7: (a) gear and (b) a part of a crank shaft

ware. This software traverses all the voxels stored in
the octree during the voxelization process and uses
GL primitives to display each voxel as a 3D point,
using the stored normal vector.

5. LIMITATIONS

It is commonplace to express, in spherical coordi-
nates, surfaces on which points with r<0 are actually
significant. To be more precise, one has a mapping
from R®— R3 given by (r,0,¢)— (r - cos 0 - cos ¢,
r-sing, r-sin 0-cos ¢); this mapping can be applied to
an arbitrary subset of the domain R? to define a sub-
set of the codomain R3. Unfortunately, the mapping
is not invertible, so we cannot simply map points in
the codomain R? to the corresponding points in the
domain R®. Thus without ad-hoc methods, our al-
gorithm is limited to computing isosurfaces that lie

within the (—oo,00)x[0,27]x[~%, 7] interval in the
domain space. In certain cases, it is possible to ex-
press r in terms of # and ¢, and hence get an expres-
sion for r2; in these cases, besides the considerable
economy in calculation times, only one version of the

equation can used instead of the two suggested above.

6. CONCLUSION

This paper has presented a new algorithm for vox-
elizing spherical implicit surfaces. The voxelization
algorithm uses interval arithmetic together with hier-
archical subdivision to identify empty regions in early
stages of the recursive subdivision. Thus, the algo-
rithm times have a tendency to increase only by a
factor of 4, instead of 8, each time the resolution
doubles for every coordinate axis. In addition, in-
terval arithmetic guarantees that the resulting vox-
elization totally envelops the surface. Therefore, this
method is robust and insensitive to rounding errors if
proper rounding modes are set for calculating lower
and upper interval bounds. The resulting voxelization
is stored in an octree defining a new concept called
here robust hierarchical vozel model which guarantees
that every level of the tree defines a set of voxels which
always envelop the continuous surface.

An original method for converting cubic intervals
into spherical intervals has also been presented. This
method allows using cubic recursive subdivision (eas-
ily generating voxels) with spherical implicit func-
tions. The problem is divided into different cases,
simplifying interval conversion. Implicit functions in
spherical coordinates define a scalar field just as rect-
angular implicit surfaces do. As a consequence, both
kinds of surfaces can be blended together. Our ap-
proach allows this blending by using voxel models to
represent both surfaces and their blending.

Our visualization method, based on high resolu-
tion voxel spaces, not only allows us to show the ef-
fectiveness of our voxelization method, but also sug-
gests an alternative way to display implicit surfaces,
offering at the same time interactive speeds and ray-
casting quality.

7. REFERENCES

[1] H. B. Bidasaria. Defining and Rendering of Tex-
tured Objects through The Use of Exponential
Functions. Graphical Models and Image Process-
ing, 54(2):97-102, March 1992.

[2] Tom Duff. Interval Arithmetic and Recursive
Subdivision for Implicit Functions and Con-
structive Solid Geometry. Computer Graphics,
26(2):131-138, July 1992.

[3] Pascal J. Frey and Houman Borouchaki. Fi-
nite Element Meshes by Means of Voxels. In
6th DGCI’96 - Discrete Geometry for Computer

Imagery, pages 165-172, Lyon, France, Novem-
ber 1996. Springer.

David Goldberg. What Every Computer Scien-
tist Should Know About Floating-Point Arith-
metic. ACM Computing Surveys, 23(1):5-48,
March 1991.

Devendra Kalra and Alan Barr. Guaranteed Ray
Intersections with Implicit Surfaces. Computer
Graphics, 23(3):297-306, July 1989.

Arie Kaufman, Daniel Cohen, and Rony Yagel.
Volume Graphics. IEEE Computer, 26(7):51-64,
July 1993.

John M. Snyder. Interval Analysis For Computer

Graphics. Computer Graphics, 26(2):121-130,
July 1992.

Nilo Stolte. Espaces Discrets de Haute
Résolutions: Une Nouvelle Approche pour la

Modelisation et le Rendu d’Images Réalistes.
PhD thesis, Université Paul Sabatier - Toulouse
- France, April 1996.

Nilo Stolte and René Caubet. Comparison be-
tween different Rasterization Methods for Im-
plicit Surfaces. In Rae Earnshaw, John A. Vince
and How Jones, editor, Visualization and Model-
ing, chapter 10, pages 191-201. Academic Press,
April 1997. ISBN: 0122277384.

Gabriel Taubin. Rasterizing Algebraic Curves
and Surfaces. IEEE - CGA, 14(2):14-23, March
1994.

